

QFO-AP-VA-009	رمز النموذج :	اسم النموذج : الامتحان	 جامعة فيلادلفيا Philadelphia University
2	رقم الإصدار: (Rev)	الجهة المصدرة: نائب الرئيس للشؤون الأكademie	
2025-4-14	تاريخ الإصدار:	الجهة المدققة : اللجنة العليا لضمان الجودة	
1	عدد الصفحات:		

إقرار المشاركة في الامتحان:
أنا الطالب المذكور أدناه، أقر وأوافق على الشروط الآتية قبل المشاركة في الامتحان:

- إغلاق جميع الأجهزة الإلكترونية مثل الهواتف الذكية، الساعات الذكية، الأجهزة اللوحية، وأي أجهزة إلكترونية أخرى بشكل كامل، وتسليمها للمراقب.
- إن استخدام أي من الأجهزة الإلكترونية أثناء الامتحان من قبلي يُعتبر انتهاكاً لقوانين الامتحان وسيتم اعتباره محاولة غش.
- أفهم أنه في حال تم العثور على أي جهاز إلكتروني بحوزتي، حتى لو كان مغلقاً، فإن ذلك سيُعتبر محاولة للغش، وسأواجه إجراءات تأديبية وفقاً للتعليمات المعمول بها في الجامعة.

التوقيع:

اسم الطالب:

Student Name: _____ **Student Number:** _____

Faculty of Engineering / Dept. of Mechanical Engineering
Mid Exam, Second Semester: 2024/2025

Course Title: Fluid (2)

Date: 01 /12/2025

Course No: 0620320

Time Allowed: 1 hour

Lecturer: Prof. Munzer Ebaid

No. of Pages: pages: (4)

Internal Examiner: Dr. Shatha Ammoura

Coordinator: None

Question 1: Basic Notions

(30 Marks)

Objectives:

- To define density, specific gravity, and specific weight.
- To assess knowledge related to fluid properties, primary dimensions , velocity gradient, and hydrostatic pressure equation

Outcomes:

- Explain the concepts of density, specific gravity, and specific weight, and differentiate between them with correct units.
- Identify and describe key fluid properties and relate them to the primary dimensions used in fluid mechanics.
- Calculate velocity gradients in simple fluid flow situations using appropriate formulas.
- Apply the hydrostatic pressure equation to determine pressure variation with depth in a static fluid

Question 2: Familiar Problems Solving**(35 Marks)****Objectives:**

- To assess students' ability to apply fundamental equation of hydrostatic fluid.
- To assess students' ability to apply manometer equation.

Outcomes:

- Students will be able to apply the manometer equation to determine pressure differences in single-fluid and multi-fluid manometer systems.
- Students will use the fundamental hydrostatic pressure equation to analyze pressure variation in static fluids.

Question 3: Unfamiliar Problems Solving**(35 Marks)****Objectives:**

- To determine the total hydrostatic force acting on a fully submerged circular gate in water.
- To locate the line of action (center of pressure) of the hydrostatic resultant on the circular gate.

Outcomes:

- Students will be able to Calculate the total hydrostatic force on a fully submerged circular gate.
- Students will be able to Determine the line of action (center of pressure) of the hydrostatic force.

Question:	1	2	3	Total	Total
Points:	30	35	35	100	30
Score:					

All Questions Must Be Answered**QUESTION (1)****(30 MARKS)****Choose the correct answer of the following. One answer only**

1. The **primary dimensions of work** is

a. $[W] = \left[\frac{L^2}{MT} \right]$

b. $[W] = \left[\frac{ML^2}{T} \right]$

c. $[W] = \left[\frac{ML}{T^2} \right]$

d. $[W] = \left[\frac{ML^2}{T^2} \right]$

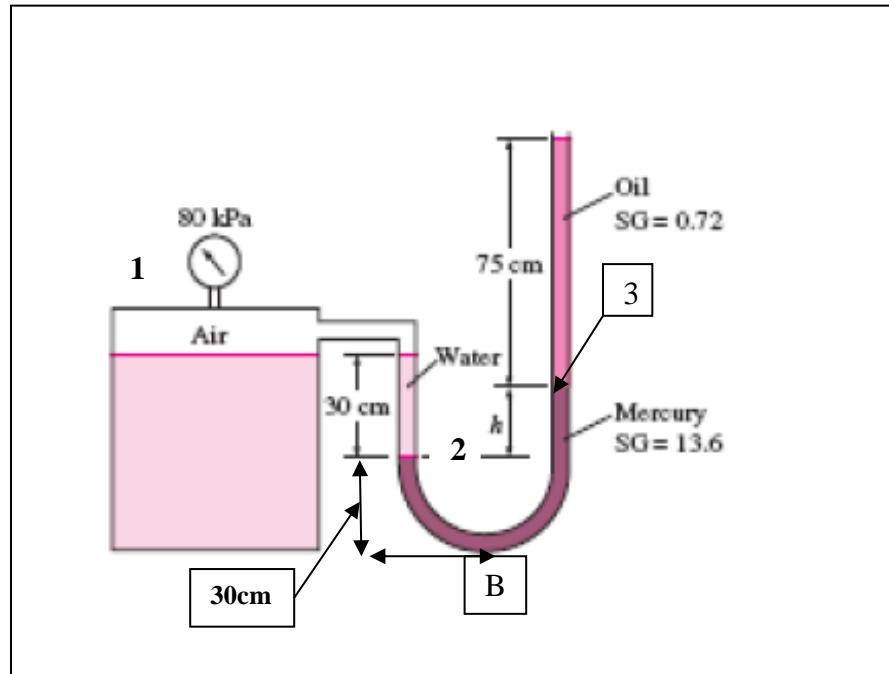
2. Air at standard sea level pressure (101 kPa), has a temperature of 10°C , the **specific weight** (γ_{air}) is equal to $(R = 287 \text{ J/kgK})$

- a. 13.60 kN/m³
- b. 12.20 kN/m³
- c. 14.50 kN/m³
- d. 10.5 kN/m³

3. Select which one of the followings applies for **specific gravity** (S.G) of water

- a. Can have the units of N/m^3
- b. S.G = 1.0
- c. Increases with temperature
- d. None of the above

4. The pressure (p) in a static fluid with vertical distance ($z = 10m$) measured upwards is

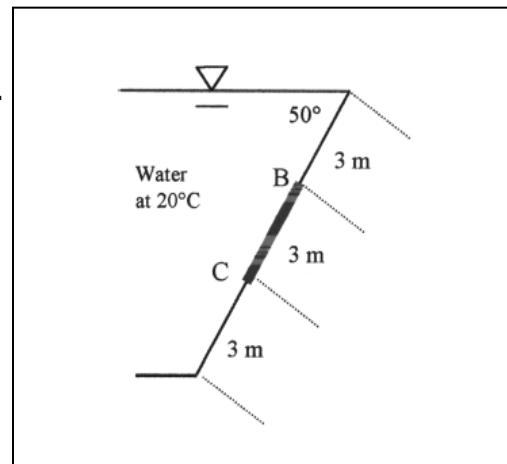

- a. $dp = -10z$
- b. $dp = -10\rho dz$
- c. $dp = -10\gamma$
- d. $dp = -10$

5. For a **flow over a surface, the velocity and velocity gradient are equal to**

- a. $V = 0, du/dy = 0$
- b. $V = 0, du/dy \neq 0$
- c. $V \neq 0, du/dy = 0$
- d. None of the above

QUESTION (2)**(35 MARKS)****Find:**

- a. Height (h) between points (2) & (3).
- b. Pressure at point (B).


(25 marks)
(10 marks)

QUESTION (3)**(35 MARKS)**

The gate BC is circular and totally immersed in water as shown in the Schematic diagram.

Find:

- a. The hydrostatic force (F) on the circular gate.
(20 marks)
- b. Hydrostatic force line of action (y_{CP}).
(15 marks)

Good Luck